The mechanism of angiotensin II binding downregulation by high glucose in primary renal proximal tubule cells.
نویسندگان
چکیده
The renin-angiotensin system plays an important role in the development of diabetic nephropathy. However, the mechanism of ANG II receptor regulation in the renal proximal tubule in the diabetic condition has not been elucidated. Thus we investigated the signal pathways involved in high-glucose-induced downregulation of ANG II binding in primary cultured renal proximal tubule cells. Twenty-five millimolar glucose, but not mannitol and L-glucose, induced downregulation of the AT(1) receptor (AT(1)R) because of a significant decline in maximal binding with no significant change in the affinity constant. Twenty-five millimolar glucose also decreased AT(1)R mRNA and protein levels. The 25 mM glucose-induced increase in the formation of lipid peroxides was prevented by antioxidants, protein kinase C (PKC) inhibitors, or L-type calcium channel blockers. These agents also blocked 25 mM glucose-induced downregulation of (125)I-ANG II binding. In addition, 25 mM glucose increased transforming growth factor (TGF)-beta1 secretion, and anti-TGF-beta antibody significantly blocked 25 mM glucose-induced downregulation of (125)I-ANG II binding. Furthermore, the 25 mM glucose-induced increase in TGF-beta1 secretion was inhibited by PKC inhibitors, L-type calcium channel blockers, or antioxidants. In conclusion, high glucose may induce downregulation of (125)I-ANG II binding via a PKC-oxidative stress-TGF-beta signal cascade in primary cultured rabbit renal proximal tubule cells.
منابع مشابه
Functional role of sodium glucose transporter in high glucose-mediated angiotensin type 1 receptor downregulation in human proximal tubule cells.
Previously, we have demonstrated human angiotensin type 1 receptor (hAT(1)R) promoter architecture with regard to the effect of high glucose (25 mM)-mediated transcriptional repression in human proximal tubule epithelial cells (hPTEC; Thomas BE, Thekkumkara TJ. Mol Biol Cell 15: 4347-4355, 2004). In the present study, we investigated the role of glucose transporters in high glucose-mediated hAT...
متن کاملStudy of Serum and Tissues Angiotensin Converting Enzyme (ACE) Activity in Rat with Gentamicin Induced Renal Toxicity
The angiotensin I-converting enzyme (ACE) converts the inactive angiotensin I molecule to the active angiotensin II. ACE is rich in epithelium, endothelium, and neuroepithelial cells and it found largely on the brush border of intestine and kidney proximal tubules. ACE also presents in the serum. Some pulmonary and renal toxic drugs change the serum and tissue ACE contents. In this research ACE...
متن کاملDopamine Downregulation of Proximal Tubule AT
Systemic and/or locally produced angiotensin II stimulates salt and water reabsorption in the renal proximal tubule. In vivo, dopamine (DA) may serve as a counterregulatory hormone to angiotensin II’s acute actions on the proximal tubule. We examined whether dopamine modulates AT 1 receptor expression in cultured proximal tubule cells (RPTC) expressing DA 1 receptors. Dopamine decreased basal R...
متن کاملRenin expression in renal proximal tubule.
Angiotensinogen, angiotensin-converting enzyme, and renin constitute the components of the renin-angiotensin system. The mammalian renal proximal tubule contains angiotensinogen, angiotensin-converting enzyme, and angiotensin receptors. Previous immunohistochemical studies describing the presence of renin in the proximal tubule could not distinguish synthesized renin from renin trapped from the...
متن کاملProtein Kinase C-δ Mediates Shedding of Angiotensin-Converting Enzyme 2 from Proximal Tubular Cells
Angiotensin-converting enzyme 2 (ACE2) degrades angiotensin (Ang) II to Ang-(1-7), and protects against diabetic renal injury. Soluble ACE2 fragments are shed from the proximal tubule, and appear at high levels in the urine with diabetes. High glucose-induced shedding of ACE2 from proximal tubular cells is mediated by the enzyme "a disintegrin and metalloproteinase-17″ (ADAM17). Here, we invest...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 282 2 شماره
صفحات -
تاریخ انتشار 2002